Дек 29

Нанобиоэлектроника является новой быстро развивающейся дисциплиной, интегрирующей достижения наноэлектроники и молекулярной биологии. В основе нанобиоэлектроники лежит использование процессов переноса заряда в биомакромолекулах и созданных на их основе молекулярных структурах нанометрового размера. Объединение наноэлектронных устройств со сложными биологическими структурами, такими как клетка, перебрасывает мостик между нанобиоэлектроникой и биотехнологией.Объединение биоматериалов с металлическими или полупроводниковыми частицами, фуллеренами или углеродными нанотрубками порождает новый класс материалов для создания уникальных электронных или оптических систем. Основные направления нанобиоэлетроники включают создание на основе таких гибридных систем биосенсоров, сложных наноэлектронных схем на основе ДНК, конструирование нанобиотранзисторов, диодов, наномоторов, нанотранспортеров и т.д.

Одним из самых значимых разделов нанотехнологии является наноэлектроника, которая предполагает использование элементов нанометрового диапазона и даже отдельных молекул. Фундаментальной задачей наноэлектроники является создание электронных устройств и проводников молекулярных размеров. Решение этой задачи позволило бы конструировать сверхбыстрые и сверхкомпактые компьютеры, использующие принципиально новые квантовые алгоритмы.

Гигантская активность в этой области связана с попытками использования для наноэлектроники фуллеренов и нанотрубок. Несмотря на уникальные свойства углеродных нанотрубок, их применение в нанотехнологических целях существенно осложнено проблемами управляемого манипулирования ими, использованием в конкретной технологической цепочке, дороговизной и широким разбросом индивидуальных свойств (от диэлектриков до полупроводников и проводников).

Альтернативным кандидатом для использования в качестве молекулярных нанопроволок является молекула ДНК. Как оказалось, помимо важнейшей роли хранилища генетической информации живого организма, молекулы ДНК могут осуществлять транспорт электронов вдоль полимерной цепи и могут проявлять хорошие проводящие свойства.

Как известно, основной целью молекулярной наноэлектроники является создание молекулярного компьютера с очень высокой плотностью размещения устройств – порядка триллиона на квадратный сантиметр. Размещение с такой огромной плотностью требует сверхмалого рассеяния мощности на каждом работающем устройстве. Предполагается, что лишь сверхпроводящие устройства могут удовлетворить этим требованиям. Для конструирования молекулярных электронных устройств необходимо научиться «управлять» молекулами, позиционировать их в заданном месте подложки с необходимой ориентацией.

Целью ближайших исследований является разработка наноструктур для исследования проводимости ДНК, разработка методов модификации поверхности наноэлектродов для успешной иммобилизации молекул ДНК, исследование свойств и структуры ДНК при адсорбции на такие поверхности. Для решения этой задачи планируется также синтезировать ДНК-подобные линейные молекулы, обладающие повышенной механической стойкостью и сопротивляемостью к стрессу, возникающему при нанесении молекул из водного раствора на твердую подложку.

Источник: ИнформНаука

Rambler's Top100